Using Prior Knowledge with Adaptive Probing
نویسنده
چکیده
When searching a tree to find the best leaf, complete search methods uch as depth-first search and depth-bounded discrepancy search use a fixed deterministic order that may or may not be appropriate for the tree at hand. Adaptive probing is a recently-proposed stochastic method that attempts to adjust its sampling on-line to focus on areas of the tree that seem to contain good solutions. While effective on a variety of trees, adaptive probing wastes time learning basic features of the problem that are built into other algorithms, such as the fact that the heuristic is often helpful. In this paper, we investigate two simple methods for adding such prior knowledge to adaptive probing. The first simply reuses the model earned during a previous run on a similar problem. The second uses a heuristically biased policy at the start of the search, gradually deferring to learned information in later iterations. Empirical results on two different representations of number partitioning confirm that these methods can allow adaptive probing to search efficiently from the very start of a run. However, reusing previous models seems to more frequently preserve the ability of the algorithm to adapt to the search space.
منابع مشابه
Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملA Family of Variable Step-Size Normalized Subband Adaptive Filter Algorithms Using Statistics of System Impulse Response
This paper presents a new variable step-size normalized subband adaptive filter (VSS-NSAF) algorithm. The proposed algorithm uses the prior knowledge of the system impulse response statistics and the optimal step-size vector is obtained by minimizing the mean-square deviation(MSD). In comparison with NSAF, the VSS-NSAF algorithm has faster convergence speed and lower MSD. To reduce the computa...
متن کاملAdaptive Probing and Communication in Sensor Networks
Sensor networks consist of multiple low-cost, autonomous, ad-hoc sensors, that periodically probe and react to the environment and communicate with other sensors or devices. A primary concern in the operation of sensor networks is the limited energy capacity per sensor. As a result, a common challenge is in setting the probing frequency, so as to compromise between the cost of frequent probing ...
متن کاملFreddy Mampadi
In the past decade, a number of adaptive hypermedia learning systems have been developed. However, most of the systems tailored presentation content and navigational support basing on prior knowledge or cognitive styles of students separately. There is a need to, however, explore how the two individual difference characteristics could be combined in adaptive hypermedia learning systems in order...
متن کاملConnections, Communication and Collaboration in Healthcare’s Complex Adaptive Systems; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”
A more sophisticated understanding of the unpredictable, disorderly and unstable aspects of healthcare organisations is developing in the knowledge translation (KT) literature. In an article published in this journal, Kitson et al introduced a new model for KT in healthcare based on complexity theory. The Knowledge Translation Complexity Network Model (KTCNM) provides a fresh perspective by mak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001